ENERGI TERKANDUNG DALAM BAHAN BANGUNAN RUMAH KEDIAMAN KELAS MENENGAH DI KOTA PADANG SUMATERA BARAT
Abstract
Walaupun pembangunan berkelanjutan merupakan agenda di Indonesia, tetapi penilaian energi yang terkandung belum menjadi perhatian utama di Sumatera Barat. Studi ini memberi gambaran tentang energi terkandung bangunan tipikal. Tujuan studi ini adalah untuk menentukan rata-rata jumlah energi terkandung rumah kediaman kelas menengah di Padang Kota, Provinsi Sumatera Barat. Metodologi yang digunakan dalam studi ini termasuk analisis energi terkandung dalam disain rancangan bangunan dan spesifikasi bahan, dan pemerhatian aktivitas pembangunan enam rumah kediaman kelas menengah terpilih. Luas lantai rumah kediaman 312 m2 hingga 638 m2. Berdasarkan informasi itu, energi terkandung pada tahap produksi bahan dan transportasi bahan dihitung untuk menentukan jumlah energi terkandung. Telah ditemukan bahwa jumlah energi terkandug rumah kelas menengah antara 3.01 GJ/m2 hingga 3.79 GJ/m2 dengan rata-rata 3.38 GJ/m2. Data, dan metodologi penemuan berguna untuk penelitian masa depan dalam pembangunanberkelanjutan. Penemuan ini juga dapat digunakan untuk membandingkan dengan prestasi energirumah kediaman serupa di negara-negara membangun lain.
References
A Utama,(2009) Indonesian residential high rise buildings: A life cycleEnergy Assessment,Energy and Buildings 41- 1263-1268.
ANLT.USA (2010) Argone NationalLaboratoryof Transportation. Embodied Energy Transportation of Materials.Materials Life LEED,USA.
BPPT (2013) Badan Pengkajian dan Penerapan Teknologi, Perencanaan Efisiensi dan Intensitas Energi Balai Besar Teknologi Energi.
Crowther P.(1999) Design for disassembly to recover embodied energy. In: The 16 th annual conference on passive and low energy architecture. 1999.
Cole, R.J.and Kernan, P.C.(1996), Life-Cycle Energy Use in Office Buildings, Building and Environment, Vol. 31, No. 4, pp. 307-317.
Ding,G.(2004) The development of a multi-criteria approach for the measurement of Sustainable performance for built projects and facilities. Ph.D. Thesis,University of technology, Sydney, Australia; 2004.
Dixit,MK et al, (2010) Identification of parameters for embodied energy measurement: A Literature Review, Energi and Buildings 42 (2010) 1238-1247.
Dixit,MK.et al,(2012). Need for an embodied energy measurement protocol for buildings:A Reviewpaper.Renewable and Sustainable Energy Reviews 16 (2012) 3730– 3743.
Dixit,(2013). Embodied Energy Calculation: Method and Guidelines for a Building and its Constituent Materials, Ph.D.Thesis,Texas A&M University,College Station,TX,USA, 2013.
Hammond, G.P.and Jones, C I.(2008) Embodied energy and carbon in construction materials. Proceedings of the Institution of Civil Engineers - Energy, 161 (2). pp. 87-98. ISSN 1751-4223
Jayeshkumar S (2015) Comparison of Carbon Emission &Embodied Energy between Brickwork & Wafflewall method for Industrial Building.International Journal of Innovative and EmergingResearch in Engineering Volume 2, Issue 6.
Lucuik, (2006). “Material and operational environmental impacts of building insulation: how much is enough?” In EIC Climate Change Technology, 2006 IEEE (pp. 1-13).
Langston, (2008). “Reliability of building embodied energy modeling: an analysis of 30 Melbourne case studies.” Construction Management and Economics, 26(2), 147-160.
Mari.TS (2007) Embodied energy of building materials A comparative analysis of terraced houses in Malaysia,41st Annual Conference of the Architectural Science Association ANZAScA 166 167, at Deakin University Australia.
Pullen.S. (1996) Data Quality of embodied energy methods. In: Proceedings of embodied Energy seminar: current state of play. 1996.
Peuportier,(2001).“Life cycle assessment applied to the comparative evaluation of single family houses in the French context.” Energy and Buildings, 33(5), 443-450.
T.Ramesh(2010), Life cycle energy analysis of buildings: An overview Energy and Buildings 42 1592–1600.
Yasantha U.G,(2007) Environmental, economic andsocialanalysis of material for doors and windows in Sri Lanka, Building andEnvironment 42 (5) 2141–2149.
Vukotic, L.(2010). “Assessing embodied energy of building structural elements.” Engineering Sustainability, 163(ES3), 147-158.
Copyright (c) 2018 JURNAL REKAYASA
This work is licensed under a Creative Commons Attribution 4.0 International License.